Пластинчатый теплообменник: разновидности, схема работы

Принцип работы и схема пластинчатого теплообменника

Теплообменник — это простое по своей конструкции оборудование, которое часто включается в схему различного рода промышленных устройств. В некоторых случаях пластинчатые теплообменники применяются в бытовых системах кондиционирования и охлаждения. Как ясно из названия, предназначены эти аппараты для отбора тепловой энергии от одной среды и передачи другой.

Особенности конструкции

Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:

  • набора пластин;
  • подвижной и неподвижной плиты;
  • верхней и нижней направляющей округлой формы;
  • элементов крепления, которые объединяют плиты в общую раму.

Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.

Преимущества пластинчатых приборов:

  • незначительные производственные и инвестиционные затраты;
  • высокоэффективная теплопередача;
  • малые габариты;
  • эффект самоочистки с помощью высокого турбулентного потока;
  • возможность увеличить КПД благодаря добавлению пластин;
  • высокая степень надежности;
  • легкость промывки;
  • небольшая масса;
  • легкость монтажа;
  • минимальное загрязнение поверхностей;
  • невозможность смешения жидкостей за счет особой конфигурации уплотнения;
  • высокая устойчивость к коррозии;
  • минимальная поверхность теплообмена благодаря высокому КПД;
  • незначительные потери давления благодаря оптимальному выбору пластин с разными видами профилей;
  • эффективная регулировка температуры за счет небольшого объема теплоносителя.

В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:

Устройство пластин

Конструкция и принцип работы пластинчатого теплообменника будет зависеть от модификации оборудования, в котором может находиться разное количество пластин с зафиксированными прокладками. Эти прокладки перекрывают каналы с проходящим тепловым носителем. Чтобы достигнуть необходимой герметичности прилегания пар соединенных между собой прокладок, достаточно крепления этих пластин с подвижной плитой.

Нагрузки, которые действуют на это устройство, распределяются, как правило, на пластины и уплотнители. Рама и элементы крепежа, по большому счету, представляют собой корпус оборудования.

Рельефная поверхность пластин во время сжатия гарантирует прочное крепление и позволяет всей системе теплообменника набрать необходимую прочность и жесткость.

Прокладки фиксируются на пластинах с помощью клипсового соединения. Необходимо сказать, что прокладки во время зажатия самостоятельно центрируются относительно своей оси. Утечка теплового носителя предотвращается благодаря окантовке обшлага, который дополнительно создает барьер.

Для устройства пластинчатого теплообменника изготавливаются несколько видов уплотнителей: с жестким и мягким рифлением.

Подробнее о теплообменном оборудовании:

В мягких пластинах каналы находятся под углом 30 градусов. Этот вид устройств характеризуется высокой теплопроводностью, но незначительной стойкостью к давлению теплового носителя.

В жестких элементах при изготовлении канавок делается угол в 60 градусов. Для этих устройств не характерна повышенная теплопроводность, их основное достоинство — возможность переносить значительное давление теплоносителя.

Для достижения наилучшего режима тепловой отдачи можно комбинировать пластины. Причем нужно учитывать, что для оптимальной работы устройства необходимо, чтобы оно функционировало в режиме турбулентности — тепловой носитель обязан передвигаться по каналам без каких-либо задержек. Между прочим, кожухотрубный теплообменник, где конструкция имеет схему «труба в трубе», обладает ламинарным течением теплоносителя.

В чем состоит преимущество? Во время одинаковых теплотехнических характеристик пластинчатое оборудование имеет значительно меньшие габариты.

Требования к прокладкам

К аппаратам с пластинами предъявлены довольно жесткие требования касательно герметичности оборудования, именно по этой причине на сегодняшний день прокладки начали изготавливать из полимеров. К примеру, этиленпропилен может с легкостью эксплуатироваться в условиях повышенных температур — и пара, и жидкости. Однако довольно быстро начинает разрушаться в среде, которая содержит большое количество жиров и кислот.

Теплообменники различаются количеством пластин

Крепление уплотнителей к пластинам производится чаще всего с помощью клипсовых замков, в редких случаях — с помощью клеящего состава.

Принцип работы

Если рассматривать, как работает пластинчатый теплообменник, то его принцип действия нельзя назвать очень простым. Пластины развернуты друг к другу под углом 180 градусов. Чаще всего в одном пакете находится по две пары пластин, которые создают 2 коллекторных контура: входа и выхода теплового носителя. Причем необходимо учитывать, что пара, которая находится с края, не задействуется во время теплообмена.

Сегодня изготавливается несколько различных типов теплообменников, которые, в зависимости от механизма работы и конструкции, делятся на:

  • двухходовые;
  • многоконтурные;
  • одноконтурные.

Принцип работы одноконтурного аппарата следующий. Циркуляция теплоносителя в приборе по всему контуру производится перманентно в одном направлении. Помимо этого, производится и противоток тепловых носителей.

Многоконтурные устройства применяются лишь во время незначительного различия между температурой обратки и входящего теплоносителя. Движение воды при этом производится в различных направлениях.

Подробнее о пластинчатом теплообменнике:

Двухходовые устройства имеют два независимых контура. С условием постоянной регулировки тепловой подачи использование этих устройств является наиболее целесообразным.

Область использования

Сегодня есть несколько разновидностей теплообменников.

При этом каждый из приборов имеет уникальную конструкцию и особенность работы:

Устройства с разборной системой зачастую применяются в тепловых сетях, которые подведены к жилым домам и зданиям разного предназначения, в климатических системах и холодильных камерах, бассейнах, теплопунктах и контурах ГВС. Паяные приборы нашли свое предназначение в морозильных установках, вентиляционных сетях, устройствах кондиционирования, промышленном оборудовании разного предназначения, компрессорах.

Подробное устройство пластинчатого теплообменника

Полусварные и сварные теплообменники применяются в:

  • вентиляционных и климатических системах;
  • фармацевтической и химической области;
  • циркуляционных насосах;
  • пищевой сфере;
  • системах рекуперации;
  • аппаратах для охлаждения приборов разного предназначения;
  • в отопительных контурах и ГВС.

Наиболее популярным видом теплообменника, который применяется в быту, является паяный, обеспечивающий обогрев либо охлаждение теплоносителя.

Характеристики и расчет

Пластины и уплотнители в качестве главных деталей теплообменных устройств производятся из разных по своим показателям и характеристикам материалов. Во время выбора в пользу определенного изделия основную роль играет его предназначение и сфера применения.

Если рассматривать отопительные системы и ГВС, то в этой сфере чаще всего используются пластины, которые сделаны из нержавейки, и пластичные уплотнители из специальной резины NBR или EPDM. Наличие пластин из нержавеющей стали дает возможность работать с тепловым носителем, нагретым до 120 градусов, в другом же случае теплообменник может разогревать жидкость до 180°C.

Между пластинами для герметизации расположены прокладки

При применении теплообменников в промышленной сфере и их подключении к технологическим процессам с действием масел, кислот, жиров, щелочей и других агрессивных сред используются пластины, которые сделаны из титана, бронзы и иных металлов. В этих случаях требуется установка асбестовых или фторкаучуковых прокладок.

Выбор теплообменника выполняется с учетом расчетов, которые производятся с помощью специального программного обеспечения.

Во время расчетов необходимо учитывать:

  • расход нагреваемой жидкости;
  • изначальная температура теплового носителя;
  • затраты теплоносителя на отопление;
  • необходимая температура прогревания.

В качестве нагревающей среды, которая протекает через теплообменник, может применяться нагретая вода до температуры 90-120°C или пар с температурой до 170°C. Тип теплового носителя подбирается с учетом вида используемого котельного оборудования. Размеры и число пластин выбираются так, чтобы получился теплоноситель с температурой, которая соответствует действующим стандартам — не выше 65°C.

Теплообменник может быть изготовлен из разных видов металла

Необходимо сказать, что главными техническими характеристиками, которые при этом также считаются и основными преимуществами, являются компактные габариты оборудования и возможность обеспечить довольно значительный расход.

Диапазон площадей обмена и вероятных расходов у аппаратов довольно высокий. Самые маленькие из них, к примеру, от компании Alfa Laval, имеют размер поверхности до 1 м² и при этом обеспечивают прохождение количества теплоносителя до 0,3 м³/час. Наиболее же габаритные приборы имеют размер около 2500 м² и расход, который превышает 4000 м³/час.

Способы обвязки

Теплообменные приборы чаще всего устанавливаются в отдельных помещениях, обслуживающих частные постройки, многоэтажные здания, теплопункты центральных магистралей, промышленные предприятия.

Небольшой вес и габариты оборудования дают возможность производить установку довольно быстро, хотя определенные изделия, которые обладают большой мощностью, нуждаются в сооружении фундамента.

Монтаж и обслуживание теплообменника лучше доверить специалистам

Во время монтирования аппарата нужно соблюдать основное правило: заливка болтов в фундаменте, с помощью которых теплообменник прочно крепится, производится в любом случае. Схема обвязки должна обязательно предусматривать подводку теплоносителя к находящемуся наверху патрубку, а к установленному внизу штуцеру производится подсоединение обратного контура. Подача разогретой жидкости подключается наоборот.

В подающем контуре требуется наличие циркуляционного насоса. Помимо основного, непременно устанавливается и одинаковый с ним по мощности запасной насос.

Если в ГВС находится магистраль обратного передвижения воды, то механизм работы и схема несколько меняется. Горячая вода, которая подается по контуру, перемешивается с холодной из водопровода, и только после этого смесь подается в теплообменник. Регулировка температуры на выходе производится с помощью электронного блока, который управляет клапаном входящего теплового носителя.

Чем больше пластин в теплообменнике, тем выше мощность

В двухступенчатой системе можно использовать тепловую энергию обратной магистрали. Это дает возможность рациональней применять имеющееся тепло и снизить чрезмерную нагрузку на котельное оборудование.

В любой из вышеописанных схем обвязки на входе в теплообменник обязан находиться фильтр. С его помощью можно не допустить засорения системы и продлить срок ее эксплуатации.

Читайте также:  Утечка в системе отопления: как обнаружить и устранить

При всех иных достоинствах пластинчатые теплообменники не опережают старые кожухотрубчатые модели только по одному важному показателю: во время обеспечения значительного расхода пластинчатые устройства недостаточно нагревают теплоноситель. Этот недостаток устраняется расчетом незначительного запаса при выборе количества пластин.

Характеристика пластинчатых теплообменников:

Пластинчатый теплообменник: схема и принцип работы

Эффективный и экономичный нагрев или охлаждение рабочей среды в современной промышленности, жилищно-коммунальной сфере пищевой и химической отраслях осуществляется с помощью теплообменников (ТО). Существует несколько типов теплообменных агрегатов, однако наибольшее распространение получили пластинчатые теплообменники.

В статье будут подробно рассмотрены конструкция, область применения и принцип работы пластинчатого теплообменника. Особое внимание будет уделено конструктивным особенностям различных моделей, правилам эксплуатации и особенностям технического обслуживания. Кроме того, будет представлен перечень ведущих отечественных и зарубежных производителей пластинчатых ТО, продукция которых пользуется повышенным спросом у российских потребителей.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.

Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.

Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 60 0 ). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 30 0 ). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 30 0 ). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Принцип работы пластинчатого теплообменного аппарата

Для обеспечения эффективной работы системы необходима полная герметичность теплообменных каналов, которая обеспечивается уплотнительными прокладками.

Требования к прокладкам

Для обеспечения полной герметичности профильных каналов и предотвращения утечки рабочих сред, уплотнительные прокладки должны обладать необходимой термостойкостью и достаточной устойчивостью к воздействиям агрессивной рабочей среды.

В современных пластинчатых теплообменниках применяются следующие виды прокладок:

  • этиленпропиленовые (EPDM). Применяются при работе с горячей водой и паром в температурном диапазоне от -35 до +160 0 С, непригодны для жирных и масляных сред;
  • NITRIL прокладки (NBR) используются для работы с маслянистыми рабочими средами, температура которых не превышает 135 0 С;
  • VITOR прокладки рассчитаны на работу с агрессивными рабочими средами при температуре не более 180 0 С.

На графиках представлена зависимость срока службы уплотнений от условий эксплуатации:

Что касается крепления уплотнительных прокладок, существует два способа:

Первый способ из-за трудоемкости и длительности укладки применяется редко, кроме того, при использовании клея значительно усложняется техническое обслуживание агрегата и замена уплотнений.

Клипсовый замок обеспечивает быстрый монтаж пластин и простоту замены вышедших из строя уплотнений.

Виды пластинчатых теплообменных аппаратов и их применение

По способу соединения теплообменных пластин теплообменник может быть:

Конструкция и принцип работы разборных пластинчатых ТО были описаны выше. Рассмотрим более подробно особенности конструкции и область применения паяных, полусварных и сварных теплообменников.

Паяный пластинчатый теплообменник

Агрегат широко используется для:

  • нагрева и охлаждения рабочих сред;
  • испарения;
  • конденсации;
  • утилизации и рекуперации тепловой энергии.

Теплообменные пластины ППТО изготавливаются из нержавеющей стали. Сборка пакета осуществляется аналогично с разборными теплообменниками, после чего производится пайка медным или никелевым припоем, в зависимости от агрессивности рабочей среды: для более агрессивных сред используется никель.

К наиболее существенным преимуществам паяных ПТО можно отнести:

  • высокую надежность;
  • возможность работы в широком температурном диапазоне;
  • легкость и небольшие габариты;
  • надежность конструкции;
  • простоту монтажа и технического обслуживания;
  • доступную стоимость.

Особенно хорошо паяные ПТО зарекомендовали себя в холодильных и замкнутых отопительных системах.

Полусварные пластинчатые теплообменники

Главной конструктивной особенностью полусварных теплообменников является попарное сваривание штампованных пластин, в результате чего формируется отдельный герметичный модуль. Сборка ПСПТО осуществляется также, как и разборного теплообменника, различие состоит в том, что вместо отдельных пластин используются готовые сварные модули.

Между первичными и вторичными модулями устанавливаются прокладки из термостойкой резины. Отсутствие внутренних прокладок позволяет существенно увеличить рабочее давление в системе и температуру рабочей среды.

Благодаря высоким эксплуатационным характеристикам ПСПТО получили широкое распространение следующих областях:

  • в системах вентиляции и кондиционирования;
  • в химическом и фармацевтическом производстве;
  • в пищевой промышленности;
  • в системах рекуперации;
  • в отопительных системах;
  • в системах централизованной подачи горячей воды.

Среди наиболее значимых преимуществ данной конструкции можно выделить:

  • широкий диапазон рабочих температур;
  • отсутствие герметизирующих прокладок;
  • инертность к агрессивным рабочим средам;
  • простоту монтажа и технического обслуживания.

В отличии от сборных ПТО, полусварные агрегаты практически полностью исключают возможность неправильной сборки.

Сварные пластинчатые теплообменники

Отсутствие уплотнений является главной особенностью конструкции сварных теплообменных аппаратов. Гофрированные пластины сварены в один блок, в котором рабочая среда протекает по внутренним каналам, а нагреваемая – по внешним.

Применяются СПТО при работе с агрессивными средами при повышенных температурах и высоком давлении рабочих сред.

Конструктивные особенности сварных теплообменников обеспечивают следующие преимущества:

  • компактность;
  • высокий коэффициент теплопередачи;
  • незначительные теплопотери;
  • простоту технического обслуживания.

Отсутствие уплотнений в сварных ПТО обеспечивает полную герметичность рабочих каналов, что позволяет работать в экстремальных условиях.

Технические характеристики

Как правило, технические характеристики пластинчатого теплообменника определяются количеством пластин и способом их соединения. Ниже приведены технические характеристики разборных, паяных, полусварных и сварных пластинчатых теплообменников:

Пластинчатые теплообменные аппараты: типы, устройство и принцип работы

Введение

Пластинчатый теплообменник – один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.

Типы, устройство и принцип работы пластинчатых теплообменников

Принцип работы всех пластинчатых теплообменных аппаратов одинаков:

  1. На входы ТО подаются теплоносители.
  2. Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
  3. В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
  4. С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
  5. Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.

Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:

Принцип работы пластинчатого теплообменника

Виды пластинчатых теплообменников в зависимости от конструкции:

Пластинчатые разборные теплообменные аппараты

Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Читайте также:  Как уберечь натяжной потолок от перегрева вокруг стояка отопления?

Конструкционная схема разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

  • Неподвижная прижимная плита – основной элемент.
  • Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • Пакет пластин – главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
  • Несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • Подвижная прижимная плита – прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • Опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).

Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.

Несомненное достоинство данного вида ТО – возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.

Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.

Паяные теплообменные аппараты

Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета – невозможна.

Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.

Паяный пластинчатый теплообменник в разрезе

Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.

Полусварные теплообменники

Полусварные теплообменные аппараты – агрегаты, в которых пакет пластин сделан комбинированным способом:

  • пластины попарно свариваются между собой;
  • с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
  • далее прикрепляется следующий сваренный мини-пакет.

Места попарной сварки пластин

Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.

Сварные теплообменники

Сварные теплообменные аппараты – устройства, в которых пластины сварены между собой без использования уплотнителей.

Внешний вид сварного теплообменника

Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:

Принцип работы сварного теплообменника

Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.

Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.

Применение пластинчатых теплообменников

Пластинчатые теплообменные аппараты используются в:

  • энергетике;
  • отоплении;
  • вентиляции и кондиционировании;
  • судоходстве;
  • пищевой промышленности;
  • машиностроении;
  • автомобилестроении;
  • металлургии.

Технические характеристики пластинчатых теплообменников

Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:

Пластинчатые теплообменники

Купить пластинчатые теплообменники. Изготовление, сборка, тестирование и испытание пластинчатых теплообменников
производится на заводах в Швейцарии, Германии, Франции, Турции, США, Японии и Кореи

Компания в России Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию пластинчатые теплообменники.

Пластинчатые теплообменники: описание, назначение и принцип действия

Пластинчатый теплообменник предназначен для переноса тепла между различными средами, причем парами рабочих сред могут служить как пар-жидкость, так и жидкость-жидкость.

Теплопередающей поверхностью служат тонкие штампованные гофрированные пластины.

Теплоносители движутся в теплообменнике между соседними пластинами по щелевым каналам сложной формы. Каналы для теплоносителя, отдающего и принимающего тепло, следуют друг за другом, чередуясь.

Тонкие гофрированные пластины имеют небольшое термическое сопротивление и, кроме того, обеспечивают турбулентность потока теплоносителя, в связи с чем теплообменники такого типа обладают высокой эффективностью теплопередачи.

Герметичность каналов, по которым движутся теплоносители, и их распределение по каналам обеспечивается резиновыми уплотнителями, расположенными по периметру пластины.

Одно из этих уплотнений охватывает два отверстия по углам пластины, через которые теплоноситель входит в канал между пластинами и выходит из него. Поток встречного теплоносителя проходит транзитом через другие два отверстия, которые дополнительно изолированы кольцевыми уплотнениями. Герметичность каналов обеспечивается двойным уплотнением вокруг входных и выходных отверстий. В случае повреждения уплотнения теплоноситель вытекает наружу через специальные канавки (на рисунке показаны стрелками). Это помогает определить нарушение герметичности визуально и быстро заменить уплотнение.

Схема движения и распределения потока теплоносителей по каналу

В теплообменнике после сборки пластины стягиваются болтами до требуемого размера, при этом уплотнительные резиновые прокладки образуют системы изолированных друг от друга герметичных каналов – для греющего и нагреваемого теплоносителя. Каждая последующая пластина развернута относительно предыдущей на 180 градусов, что, создавая условия для турбулентного движения жидкости, повышает эффективность теплообмена, и одновременно служит для обеспечения жесткости пакета пластин.

Системы каналов между пластинами соединены каждая со своим коллектором и имеют каждая свои точки входа и выхода теплоносителя на неподвижной плите.
На раме теплообменника укрепляется пакет пластин.

Принцип работы пластинчатого теплообменника

Конструктивная схема пластинчатого теплообменника. Основные узлы и детали

Устройство рамы теплообменника: неподвижная плита, подвижная плита, штатив, верхняя и нижняя направляющие, и стяжные болты.

При сборке направляющие – верхняя и нижняя – сначала закрепляются на штативе и неподвижной плите. Далее, на направляющие надевается сначала пакет пластин, а затем подвижная плита. Подвижную и неподвижную плиты стягивают болтами.

Одноходовые теплообменники сконструированы таким образом, что присоединительные патрубки расположены на неподвижной плите. Для того, чтобы крепить теплообменник к строительным или технологическим конструкциям, на штативе и неподвижной плите имеются монтажные пятки.

Виды и типы пластинчатых теплообменников

Пластинчатые теплообменники делятся по конструкции и по размеру теплообменной пластины на нескольких видов.

По конструкции теплообменники делят на:

  • одноходовые;
  • двухходовые с циркуляционной линией и без нее;
  • двухходовые, выпускающиеся в виде моноблока. Используются для систем горячего водоснабжения;
  • трехходовые.

Преимущества пластинчатых теплообменников

Пластинчатые теплообменники имеют следующие преимущества по сравнению с другими видами:

Уменьшение площади, которое занимает теплообменное оборудование.

Способность к самоочищению теплообменника.

Высокий коэффициент теплопередачи.

Маленькие потери давления.

Уменьшение расхода электроэнергии.

Простота ремонта оборудования.

Небольшое время, необходимое для ремонта оборудования.

Небольшая величина недогрева.

Основной фактор, играющий большую роль при компоновке и размещении оборудования – его компактность. Размеры пластинчатого теплообменника меньше, чем, например, кожухотрубного. Более высокое значение коэффициента теплопередачи позволяет достичь и более компактных размеров. Так, теплопередающая поверхность составляет 99,0 – 99,8% от общей площади пластины.

Далее, все подсоединительные порты находятся на его неподвижной плите, что делает монтаж и подключение теплообменника значительно более простым. Кроме того, для ремонтных работ требуется значительно меньше площади, чем при ремонте теплообменников другого типа.

Небольшая величина недогрева

Движение теплоносителя по каналам тонким слоем, высокая турбулентность его потока обеспечивает высокий коэффициент теплоотдачи. При этом гофрированная поверхность пластины дает возможность получить турбулентный поток уже при относительно небольших скоростях движения потока теплоносителя. Поэтому величина недогрева в этом случае при расчетных режимах работы достигает 1-2 оС, в то время как для кожухотрубных теплообменников в лучшем случае эта величина составляет 5-10 оС.

Низкие потери давления

Конструктивная особенность пластинчатых теплообменников позволяет уменьшать гидравлическое сопротивление, например, за счет плавного изменения общей ширины канала. Кроме этого, максимальная величина допустимых гидравлических потерь может быть уменьшена увеличением количества каналов в теплообменнике. В свою очередь, уменьшение гидравлического сопротивления снижает расход электроэнергии на насосах.

Небольшие трудозатраты при ремонте теплообменника

Периодические ремонты оборудования всегда связаны со сборно- разборочными работами. Демонтаж кожухотрубного теплообменника – это весьма сложное инженерное мероприятие. Для демонтировки и извлечения пучка труб необходимо использование подъемных механизмов и весь процесс разборки занимает достаточно много времени. При ремонте пластинчатого теплообменника применение подъемных механизмов не требуется. С ремонтом свободно и достаточно быстро справится бригада в 2-3 человека.

Кроме того, мощность теплообменника может быть плавно изменена увеличением поверхности теплообмена. Это его особенность важна, когда, например, при расширении производства, возникает необходимость увеличения мощности теплообменного оборудования. В этом случае достаточно, не заменяя всего теплообменника, прибавить нужное количество пластин.

  • Охлаждение воды на промышленных ТЭС
  • В сталелитейном производстве
  • Автомобильная промышленность
  • В системах отопления, водоснабжения и вентиляции в любых зданиях применяются пластинчатые теплообменники разборного типа;
  • Пластинчатые теплообменники используются на производстве в системе душевых сеток;
  • Воду в бассейнах подогревают часто именно пластинчатыми теплообменниками;
  • Пластинчатые теплообменники служат для охлаждения жидких пищевых продуктов, гидравлического, трансформаторного и моторного масел;
  • Для систем напольного отопления используют пластинчатые теплообменники разборные;
  • Теплоснабжение небольших районов или высотных зданий обеспечивается зачастую пластинчатыми теплообменниками.
Читайте также:  Воздухосборники систем отопления: разновидности, установка

Пластинчатый теплообменник: конструкция, принцип работы, виды

Узнайте особенности и области применения разборных пластинчатых теплообменников.

Пластинчатый теплообменник – это важный элемент в системе отопления и горячего водоснабжения, который предназначен для теплообмена между двумя рабочими средами. Между теплопередающими пластинами в противотоке двигаются греющий и нагреваемый теплоносители без смешивания между собой.

Например, устройство для ГВС мощностью 670 ккал/ч. Один контур – горячая вода 70 градусов, а второй контур холодная вода 5 градусов. Установка позволяет нагревать второй контур до 50 градусов, охлаждая первый до 40 градусов.

Теплообменник и его виды

Теплообменник – это специальный аппарат, который предназначен для обмена тепла между двумя рабочими средами с различной температурой. Существует множество типов и конструкций. По принципу работы теплообменные устройства разделяются на регенеративные и рекуперативные.

Рекуперативный тип отличается тем, что процесс обмена происходит между теплопередающими пластинами. Потоки изолированы и разделены.

Регенеративный тип характеризуется тем, что обмен осуществляется на одной поверхности, с которой теплоносители контактируют поочередно.

Из рекуперативных наиболее распространенными являются:

  • Кожухотрубные – имеют цилиндрическую форму, состоят из кожуха и трубного пучка.
  • Пластинчатые – состоят из тонких теплопередающих пластин и резиновых уплотнений для герметичности. Имеют разборную конструкцию, что значительно упрощает обслуживание в процессе эксплуатации.
  • Витые – конструкция состоит из спиральной трубки, внутри которой движутся рабочие среды.
  • Спиральные – по принципу работы схожи с пластинчатыми, но более устойчивы к воздействию высокого давления и температуры. Имеют сварную спиральную конструкцию.

Рекуперативные наиболее востребованы в промышленности, жилищно-коммунальном хозяйстве и производстве.

Преимущества заказа теплообменного и котельного оборудования у нас

  • Доставка по России, Казахстану и другим странам СНГ от 3 дней
  • Даем дилерские цены заводов-производителей на 30% ниже рыночных
  • Подписываем официальный договор – гарантия до 3 лет
  • Собственное производство пластинчатых видов – изготовим за 3 дня
  • Профессиональный подбор оборудования

Просто позвоните.. Наш инженер осуществит точный расчет оборудования.

Конструкция пластинчатого устройства

Основой конструкции пластинчатого вида агрегатов являются теплопередающие пластины и уплотнения, которые стянуты болтами между прижимными плитами. Основной материал из которого изготавливают пластины AISI 316 (нержавеющая сталь) толщиной от 0,4 до 1 мм. Для специальных применений возможно изготовление из титана и других сплавов.

На основе синтетического каучука производятся уплотнения, которые препятствуют протечкам и служат для герметичности агрегата.

  • Нитрильный каучук (NBR): для вязкой или водной рабочей среды;
  • Этилен-пропиленовый каучук (EPDM): для химических веществ без содержания минеральных масел и жиров.
  • Фтор-каучук (VITON / FKM): специальный материал, высоко устойчивый к химическим и агрессивным теплоносителям.

Технические характеристики

  • материал пластин: нержавеющая сталь AISI304, AISI316, 254SMO, Hastelloy, титан, палладий и др.
  • температура сред не более 180°C
  • максимальное рабочее давление до 15 бар
  • площадь поверхности теплообмена от 0,1 кв. м до 2100 кв. м
  • количество пластин зависит от требуемой мощности

Принцип работы

Сферы применения ЖКХ

В жилищно-коммунальном хозяйстве в основном применяют пластинчатые для подогрева воды в системе отопления и горячего водоснабжения, вентиляции, нагрева воды в бассейнах.

В пищевой промышленности агрегаты нашего типа нашли применение в системах пастеризации молока и молочных продуктов, в системах охлаждения и пастеризации пивного сусла, вина и других напитков.

В металлургической промышленности их применяют для охлаждения оборудования и рабочих сред. Например, жидкости в станках и печах для плавки.

В нефтегазовой отрасли теплообменное оборудование используют для охлаждения жидких и газообразных сред, в установках химподготовки.

На судах теплообменные устройства служат для охлаждения двигателя, масел и основных узлов с применением морской воды.

Разборные пластинчатые виды

Паяные виды

Нужна консультация?

Инженеры компании помогут Вам осуществить правильный расчет для Вашего объекта и подобрать наиболее подходящую модель.

Свяжитесь с нами любым удобным для Вас способом и получите расчет в течение 20 минут.

Заполните форму в правой части страницы или позвоните по номеру +7 (804) 333-70-94 и проконсультируйтесь с нашим специалистом.

Схема теплообменника, принцип работы

Теплообменный аппарат, в котором разделительная поверхность образована из тонких штампованных гофрированных пластин, является теплообменником пластинчатого типа.

Принцип работы теплообменников построен на движении рабочих сред по щелевым каналам сложной формы между соседними пластинами теплообменника.

Каналы для греющего и нагреваемого теплоносителей чередуются между собой (рис. 1). Гофрированная поверхность пластин теплообменника усиливает турбулизацию потоков рабочих сред и повышает коэффициент теплоотдачи.

«Теплотекс АПВ» производит расчёт, изготовление, продажу и сервисное обслуживание всех типов пластинчатых теплообменных аппаратов. В их числе: разборные, паяные и гибрибные пластинчатые теплообменники с пластинами из коррозионно-стойкой стали AISI 316 (возможно использование пластин из сплава титана ASTM B256) и резиновыми уплотнениями из термостойкой резины EPDM или Viton (максимальная рабочая температура 150*С и 180*С соответственно). При этом конечная цена на все виды нестандартных пластинчатых теплообменников максимально приближена к стоимости типовых пластинчатых теплообменных аппаратов и максимально соответствует возможным ожиданиям заказчика.

Уплотнения в разборном пластинчатом теплообменнике крепятся к пластине теплообменника с помощью клипс.

Контурная резиновая прокладка разборного пластинчатого теплообменника (рис. 2) охватывает два угловых отверстия разборного теплообменного аппарата, через которые проходит поток рабочей среды в межпластинный канал разборного пластинчатого теплообменника и выходит из него, а через два других отверстия, изолированных дополнительно кольцевыми уплотнениями разборного пластинчатого теплообменника, встречный поток проходит транзитом. Вокруг этих отверстий разборного пластинчатого теплообменника имеется двойная прокладка, которая гарантирует герметичность каналов (рис. 3) разборного пластинчатого теплообменника.

Уплотнение разборного пластинчатого теплообменника сконструировано таким образом, что в случае ее повреждения, протечки можно определить визуально, купить и заменить прокладку разборного теплообменного аппарата за короткое время. Уплотнительные прокладки разборного пластинчатого теплообменника крепятся к пластине таким образом, что после сборки и сжатия пластины в разборном теплообменном аппарате образуют две системы герметичных межпластинных каналов разборного пластинчатого теплообменника, изолированных друг от друга металлической стенкой и прокладками — одна для греющей среды, другая для нагреваемой.

Обе системы межпластинных каналов разборного пластинчатого теплообменника соединены с соответствующими коллекторами и далее со штуцерами для входа и выхода рабочих сред на неподвижной плите разборного пластинчатого теплообменника. Пластины в составе разборного пластинчатого теплообменника, которые так же возможно купить отдельно, собираются в пакет таким образом, что каждая последующая пластина повернута на 180o в плоскости ее поверхности относительно смежных, что создает равномерную сетку пересечения взаимных точек опор вершин гофр разборного пластинчатого теплообменного аппарата и обеспечивает жесткость пакета пластин разборного пластинчатого теплообменника.

Рама разборного пластинчатого теплообменника (рис. 4) состоит из неподвижной плиты (1), стойки (4), верхней (2) и нижней (7) направляющих, подвижной плиты (3) и комплекта стяжных болтов (8).
Верхняя и нижняя направляющие в разборном пластинчатом теплообменнике крепятся к неподвижной плите и к стойке. На направляющие разборного пластинчатого теплообменника навешивается подвижная плита (3) и пакет пластин (5,6). Неподвижная и подвижная плиты стягиваются в пластинчатом теплообменнике посредством болтовых соединений. У одноходовых разборных пластинчатых теплообменников все присоединительные штуцера расположены на неподвижной плите.

За основу в разборных пластинчатых теплообменниках «Теплотекс АПВ» взят типоразмерный ряд пластин датской компании АРV с различным профилем рабочей поверхности и площадью от 0,018 м 2 до 4,75 м 2 (рис. 5), обладающих помимо отменного качества выгодной ценой, по которой возможно их купить, обратившись непосредственно в компанию «Теплотекс АПВ» любым удобным способом.

Каналы теплообменного аппарата, образованные пластинами АРV, имеют несколько большее поперечное сечение, чем в разборных пластинчатых теплообменниках других производителей теплообменного оборудования. Поэтому разборные пластинчатые теплообменники производства «Теплотекс АПВ» медленнее загрязняются из-за некачественной подготовки водопроводной воды и требуют промывки пластин и замены уплотнений гораздо реже, чем в теплообменных аппаратах конкурирующих производителей теплообменного оборудования, что имеет решающее значение в аспекте надёжности и формировании цены на сервисное обслуживание разборного теплообменного оборудования, которое планируется к использованию.

В пластинах разборных теплообменных аппаратов компании «Теплотекс АПВ» рационально выполнена зона распределения теплоносителя по ширине канала. Специальная насечка позволяет выровнять сопротивление по ширине канала и обеспечить равномерное обтекание рабочей поверхности пластины разборного пластинчатого теплообменника, что приводит с снижению общей цены разборного пластинчатого теплообменника.

Пластины одного типоразмера могут иметь угол наклона гофр к горизонтальной оси 300 (так называемые жесткие пластины) и 600 («мягкие пластины»). Для жестких пластин разборного теплообменного аппарата характерна большая тепловая производительность и большие потери напора, для мягких пластин – меньшая тепловая производительность и меньшие потери напора. В одном разборном теплообменном аппарате допускается использовать и жесткие, и мягкие пластины. Это еще один способ максимально приблизиться к требуемой производительности разборного пластинчатого теплообменника и допустимым потерям напора при минимальной поверхности нагрева разборного пластинчатого теплообменного аппарата.

Ссылка на основную публикацию