Про инновационные тепловые аккумуляторы от мартина Шихтеля

Про инновационные тепловые аккумуляторы от мартина Шихтеля

У нас всегда в наличие широкий ассортимент собственной выпускаемой продукции.
Все товары сертифицированы
и являются обладателями международных наград качества.

Ознакомьтесь подробнее
с продукцией
компании «Мартин»

Выбирайте только лучшие продукты!

У нас всегда в наличие широкий ассортимент собственной выпускаемой продукции.
Все товары сертифицированы
и являются обладателями международных наград качества.

Ознакомьтесь подробнее
с продукцией
компании «Мартин»

Выбирайте только лучшие продукты!

У нас всегда в наличие широкий ассортимент собственной выпускаемой продукции.
Все товары сертифицированы
и являются обладателями международных наград качества.

Ознакомьтесь подробнее
с продукцией
компании «Мартин»

Скачать каталог продукции

«Мартин» предлагает выгодные условия для реализации своей продукции в вашем регионе

Попробуйте вкусные компоты «от Мартина»!

Новинка от компании “МАРТИН”

Теперь уже ищите в магазинах соленые фисташки торговой марки «От Мартина»! читать полностью

Две золотые медали и Гран-при: итоги выставки «ПРОДЭКСПО-2018»

9-ого февраля на территории ЦВК «Экспоцентр» в Москве завершилась юбилейная международная выставка лучших продуктов и напитковчитать полностью

Продукция ТМ «От Мартина» получила сразу четыре золотых медали

Компания «Мартин» получила золото сразу в четырех номинациях масштабной международной выставки «Зеленая неделя – 2015» в Берлине.читать полностью

«Мартин» сегодня – это:

лет
успешной
работы на рынке

компания
международного
уровня

лауреат
международных
наград качества
продукции

высокотехнологичные
системы
производства

видов
производимой
продукции

только экологичные
компоненты
в изготовлении

Ассортимент Продукции Компании «Мартин»
постоянно расширяется, но качество остаётся на высоте,
поэтому она завоевала любовь людей по всему миру

Компания «МАРТИН» была основана в 2000 году в городе Электроугли Московской области.

19 лет работы над улучшением селекции, технологии обжарки и условий хранения не прошли даром – сейчас компания «МАРТИН» предлагает самые лучшие отборные семечки, которые хорошо известны не только в России, но и за рубежом. Выбор сорта подсолнечника и места выращивания играет важную роль для достижения желаемого результата.

Новейшая техника и высочайшая квалификация специалистов – вот две основные составляющие нашего успеха! Мы постоянно анализируем современные технологии и используем их при производстве нашей продукции, что позволяет нам внедрять инновационные решения. Наше оборудование постоянно совершенствуется и обновляется, поэтому семечки компании «МАРТИН» отличаются великолепным качеством и неповторимым вкусом.

Lockheed Martin готовит переворот в энергетике. В России в это не верят

Американская лаборатория Skunk Works в 2024 году готовится представить серийную версию термоядерного реактора, который теоретически может изменить облик всей современной энергетики в мире. Сообщается, что новый термоядерный реактор размерами с грузовой автомобиль и мощностью 100 МВт пригодится и на нашей планете, и в космосе. Американская компания Lockheed Martin раскрыла подробности своего нового проекта T4 по разработке мощного и компактного термоядерного реактора CFR (Dubbed the compact fusion reactor) совсем недавно. Сообщается, что эта прорывная в своей области технология создается в лаборатории Skunk Works, которая специализируется на секретных военных разработках. Поэтому нет ничего удивительного в том, что о проекте так долго не было ничего известно.

Лишь в 2013 году компания приоткрыла завесу тайны над своим проектом T4, рассказав о его существовании. Теперь же общественности стали известны и некоторые детали, касающиеся новой энергетической системы. Компания Lockheed Martin обещает, что готовый прототип нового реактора будет изготовлен ими через 5 лет, а первые серийные образцы приступят к работе через десятилетие. Сообщается, что, в отличие от современных опытных образцов термоядерных реакторов, реактор CFR будет в 20 раз мощнее и в 10 раз компактнее.

Корпорация Lockheed Martin в закрытом режиме осуществляла эксперименты в области ядерных технологий в течение последних 60 лет, но теперь решила известить о них общественность, чтобы привлечь государственных и частных партнеров. Стоит отметить, что такое «увлечение» одного из крупнейших поставщиков Пентагона альтернативной энергетикой эксперты связывают с тем, что в США занимаются сокращением военных расходов.

В настоящее время корпорация Lockheed Martin является одной из крупнейших во всем мире компаний, которая специализируется на выпуске разнообразной военной и аэрокосмической техники. Штат компании насчитывает более 113 тысяч человек, а объем ее продаж только в 2013 году оценивался в 45,4 миллиарда долларов. Начиная с середины 2000-х годов, Lockheed Martin работает над разработкой многоразового космического корабля Orion, который должен доставлять людей и грузы на МКС, Луну, а в будущем, возможно, и на Красную планету.

Оснастить космический корабль компактной термоядерной установкой — достаточно заманчивая идея. В то же время современные ядерные реакторы достаточно дороги и громоздки по размерам. К примеру, самый известный проект в этой области — научно-исследовательский ITER — при прогнозируемой мощности в 500 МВт стоит около 50 миллиардов долларов. При этом он обладает высотой более 30 метров и после окончания строительства будет весить 23 000 тонн. В то же время серийный реактор от корпорации Lockheed Martin можно будет перевозить при помощи автомобильного транспорта.

До сих пор большая часть конструкций термоядерных реакторов основывается на принципах токамака, который был разработан еще физиками СССР в 1950-е годы. В реакторах такого типа кольцо плазмы удерживается при помощи мощного магнитного поля, создаваемого сверхпроводящими магнитами. Еще один набор магнитов отвечает за индуцирование тока внутри самой плазмы и за поддержание термоядерной реакции. Проблема токомаков заключается в том, что они производят не намного больше энергии, чем тратится на питание используемых магнитов, их рентабельность стремится к нулю.

В предложенном корпорацией Lockheed Martin реакторе CFR плазма удерживается при помощи особой геометрической формы по всему объему камеры реактора. В CFR также применяются сверхпроводящие магниты, но они генерируют магнитное поле вокруг внешней границы камеры, поэтому нет необходимости достаточно точно позиционировать линии магнитного поля относительно плазмы, а сами эти магниты находятся вне границ активной зоны. При этом увеличивается объем плазмы (следовательно, и выход энергии). И чем сильнее плазма стремится выбраться наружу, тем сильнее магнитное поле пытается вернуть ее назад.

Сообщается, что реактор должен объединить в себе лучшие решения, которые были созданы для разных проектов термоядерных реакторов. К примеру, в концах цилиндрической активной зоны реактора располагаются особые магнитные зеркала, которые могут отражать существенную часть частиц плазмы. Помимо этого, была создана система рециркуляции, которая похожа на применяемую в опытном реакторе Polywell. Данная система при помощи магнитного поля осуществляет захват электронов и создает зоны, в которые устремляются положительные ионы. Здесь они сталкиваются между собой и поддерживают непрерывный процесс термоядерной реакции. Все это существенно увеличивает эффективность реактора.

В качестве топлива в реакторе от Lockheed Martin планируется применять тритий и дейтерий, которые помещаются в активную зону реактора в виде газа. В ходе прохождения реакции термоядерного синтеза происходит образование гелия-4 и освобождение электронов, которые отвечают за нагрев стенок реактора. Далее в работу вступает традиционная схема паровых труб и теплообменников.

На данный момент проект американской аэрокосмической корпорации пребывает на стадии работ по созданию опытного образца, а полноценный прототип должен быть готов через 5 лет. По словам авиационного инженера Lockheed Martin Томаса Мак-Гвайра, рабочий прототип должен будет подтвердить работоспособность предлагаемой конструкции. Помимо всего прочего, он должен обеспечить зажигание плазмы и поддержание процесса термоядерной реакции на протяжении 10 секунд. Еще спустя 5 лет после создания рабочего прототипа, то есть к 2024 году, американские инженеры рассчитывают произвести первую серию термоядерных реакторов CFR, которые можно будет применять в промышленности.

Сообщается, что реакторы ранних серий будут обладать небольшими габаритами — для того, чтобы их можно было поместить в транспортабельные контейнеры 7х13 метров. При таких достаточно скромных для термоядерных реакторов размерах они смогут производить рекордный объем энергии: примерно 100 МВт. Принимая во внимание параметры первой серии реакторов CFR, нетрудно понять, что работой в этом направлении интересуются в Пентагоне. Американским военным необходимы компактные и очень мощные источники энергии для разработки и совершенствования перспективного лазерного и микроволнового оружия.

В то же время на гражданском рынке подобные термоядерные реакторы в состоянии осуществить настоящую революцию. Компактный и безопасный термоядерный реактор подобной мощности сможет обеспечить энергией до 80 тысяч домов. При этом его очень легко можно будет встроить в современные электрические сети (в отличие от таких источников энергии как солнечные панели и ветряки). Помимо всего перечисленного, CFR — это почти идеальная энергетическая установка для перспективных космических кораблей. При помощи новых двигателей на основе CFR пилотируемые космические корабли смогут гораздо быстрее долететь до Марса.

Российские ученые не верят в прорыв компании Lockheed Martin

Читайте также:  Рассказываем о том, как получить мягкий пар в бане

Кроме Lockheed Martin, исследованиями в области термоядерного синтеза в настоящее время активно занимается команда ученых из международного проекта под аббревиатурой ITER/ИТЭР — International Thermonuclear Experimental Reactor. Результаты их деятельности в настоящее время далеки от анонсированных успехов, которые были сделаны аэрокосмической корпорацией. По этой причине правдивость распространенной Lockheed Martin информации ставится под сомнение, и уже вызвала массу споров в научных кругах. Российские ученые не особо верят опубликованным материалам.

К примеру, глава российского агентства ИТЭР Анатолий Красильников публично высказался о том, что тот научный прорыв, который был озвучен специалистами Lockheed Martin, в действительности — пустые слова, которые не имеют ничего общего с реальной жизнью. Тот факт, что в США готовятся приступить к созданию прототипа термоядерного реактора с заявленными габаритами, господину Красильникову кажется обыкновенным пиаром. По мнению Анатолия Красильникова, наука на современном этапе развития не в состоянии спроектировать безопасный и полноценно функционирующий термоядерный реактор столь небольших размеров.

В качестве аргументации он привел тот факт, что сегодня над международным проектом ИТЭР трудятся заслуженные физики-ядерщики США, КНР, стран ЕС, России, Японии, Индии и Южной Кореи, но даже собранные вместе лучшие умы современной науки надеются получить первую плазму из ИТЭР в самом лучшем случае к 2023 году. При этом даже речи не идет ни о какой компактности прототипа реактора.

Естественно, в будущем возможность разработать маленькую по размерам установку станет очевидной, но это произойдет не в ближайшие несколько лет. Тогда как в Lockheed Martin заявляют, что смогут показать реальную модель реактора уже через год. И конечно, в это трудно поверить, учитывая, что над проектом такого уровня инженеры компании трудятся изолированно от остальных ученых. Анатолий Красильников уверен в том, что обещания представителей Lockheed Martin показать опытный образец так и останутся просто обещаниями.

Он отмечает, что ведущие инженеры трудятся над созданием первого термоядерного реактора на протяжении не одного десятка лет, а этот процесс предполагает обязательный обмен опытом. При этом перспективные разработки и наработки становятся доступными для других ученых. Прорыв же специалистов, о деталях которого не было ничего никому известно, кажется очень сильно преувеличенным. Скорее всего, он преследует не научные цели, а коммерческие. Они хотят привлечь внимание, привлечь дополнительные денежные ресурсы, а их заявления — это рекламная кампания.

Евгений Велихов, президент НИИ «Курчатовский институт», высказался об американском проект еще резче, прокомментировав появившуюся новость словами «фантазии Lockheed Martin». Он не обладает информацией о каких-либо реальных успехах в создании специалистами американской корпорации компактного термоядерного реактора, которые были бы подкреплены фактами. По словам Евгения Велихова, об американском изобретении не информирован никто в мире, кроме самой американской компании, значимые технические подробности проекта не раскрыты, но волна обсуждения в СМИ уже поднялась.

Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

Локхид Мартин запатентовала компактный термоядерный реактор двойного назначения

Говорить о том, что это ответ, на презентацию новых видов российского вооружения, не получится, патент полученный Локхид Мартин, датирован 15.02.2018 года. Называется он «Инкапсулирующие магнитные поля для ограничения плазмы» (Encapsulating Magnetic Fields for Plasma Confinement), для простоты, его назвали компактным термоядерным реактором, или CFR (Compact Fusion Reactor). Как заявляет разработчик, если проект пойдет по графику, то в следующем году, компания может дебютировать с прототипом системы, размером с транспортный контейнер, которая способна обеспечивать энергией авианосец класса Нимиц или 80 000 домов

«Главный оборонный Подрядчик» подал предварительную заявку 3 апреля 2013 года. Тогда доктор Томас Макгуайр, руководитель разработки компактного термоядерного реактора, сказал, что их цель разработать реактор в течение пяти лет и получить готовый образец в пределах 10 лет.

С 1920-х годов, ученые работают над концепциями небольших термоядерных реакторов, но к сожалению большинство действующих образцов были неэффективны, а большие – как правило, были размером с небольшой дом, а также чрезвычайно дороги. Например, Международный экспериментальный термоядерный реактор, который строит международный консорциум во Франции и будет готов, как ожидается к 2021 году, по оценкам, его общая стоимость $50 млрд и весит он около 23.000 тонн.

Видео-презентация от “Локхид Мартин” 2014 года

В отличие от ядерного деления, где атомы сталкиваются друг с другом выделяя энергию, термоядерная реакция включает нагревание газообразного топлива до момента, когда атомы распадаются на ионы и электроны от давления, а затем свободные ионы сливаются в более тяжелые ядра, за счёт кинетической энергии их теплового движения.

Процесс включает в себя освобождение большого количества энергии, в миллионы раз больше, чем в обычной химической реакции, как при горении ископаемого топлива. Но для этого вы должны быть в состоянии удерживать газ, который в конечном итоге переходит в перевозбужденное Плазменное состояние, в течение длительного периода времени при температуре в сотни миллионов градусов по Фаренгейту, сказал Макгуайер.

В интервью 2014 в Aviation Week, Макгуайр упоминал токамаки, магнитные устройства, впервые изобретённые учеными СССР, в 1950-х годах, в качестве примера, заявив, что они имели низкий магнитный предел давления, при которых они могли спокойно работать.

Если проект заработает, сложно сказать, насколько кардинально он может изменить не только будущее войны, но саму природу человеческого существования. По оценкам Локхид Мартин, запущенный, примерно, на 25 килограммах топлива (смеси изотопов водорода, дейтерия и трития), условный реактор смог бы проработать целый год, без остановки. Устройство будет способно генерировать постоянные 100 мегаватт электроэнергии, в течение этого периода.

Применяя такую систему в авиации, в зависимости от размера реактора, самолет не нужно будет заправлять за весь его жизненный цикл, лимит будет лишь в пище и других системах жизнеобеспечения экипажа. Высотный БПЛА с возможностью находиться в воздухе в течение нескольких месяцев или даже лет, может потенциально занять место спутников для военного и гражданского применения.

Те же преимущества могут применяться для транспортных средств на суше, кораблей в море, аппаратов в космосе, обеспечивая почти неограниченную энергию в компактной форме, что позволяет расширить поле деятельности. Опять же, по заявлениям военных, беспилотные наземные транспортные средства и корабли могли бы патрулировать неограниченно далеко от традиционных логистических цепочек.

В этом и заключаются, пожалуй, наибольшие потенциальные выгоды от ядерного синтеза. Не будет никаких опасных выбросов и в случае сбоя системы, не будет угрозы крупномасштабного радиологического инцидента. Дейтерий и тритий относительно безвредны в малых дозах. Небольшое количество топлива, необходимое для термоядерного реактора, снижает шансы на то, что утечка негативно повлияет на большую территорию, в случае аварии.

И поскольку термоядерному реактору не нужен особый расщепляющийся материал, его гораздо сложнее, использовать для отправной точки при создании программы ядерного оружия. Это в свою, очередь, говорит, о том что его будет легко экспортировать.

Топлива также будет достаточно, и оно сравнительно легкодоступно, так как морская вода является практически неограниченным источником дейтерия. Работа с отходами производства, также упрощается, так как они разлагаются за сотни, а не тысячи лет.

Система все равно работает путем генерации тепла и использует эту энергию, чтобы приводить турбину в движение для выработки электроэнергии, это означает, что “Локхид Мартин” может предложить разработку для замены существующих энергоустановок, работающих на угле, газе и нефти.

Конечно, пройдёт ещё много времени как термоядерный реактор от Локхид Мартин станет реальностью. Многие другие компании и учреждения пытались в течение почти столетия, создать работоспособную термоядерную установку.

Правительство США оставляет за собой право засекречивать патенты, если считает раскрытие информации угрозой национальной безопасности. В данном случае информация не была закрыта и это оставляет место для раздумий, насколько реалистично реализовать данный проект.

Фото, что бы определиться с размером агрегата

В России разработан конструктивно новый тип аккумуляторной батареи

  • Li-ion элементы конструкции ТЭЭМП
  • © teemp.ru

Оригинальная конструкция литий-ионных аккумуляторов ТЭЭМП открывает путь для создания унифицированных гибридных накопителей электроэнергии.

Российский производитель систем накопления энергии — компания «ТЭЭМП» — разработал конструктивно новый тип аккумуляторной батареи, которая по своим массогабаритным характеристикам превосходит существующие на рынке накопители энергии. В основе нового изделия — запатентованная конструкция ячейки, серийно производимой компанией для суперконденсаторных модулей. Она не имеет аналогов по соотношению плотности накапливаемой энергии к занимаемому объему и массе, равномерности распределения токовой нагрузки и интегрированной системе диссипации тепловых полей (охлаждения).

Суперконденсаторы, серийно выпускаемые компанией «ТЭЭМП», обеспечивают удельные мощности более 100 кВт/кг, при удельной энергии до 10 Вт.ч/кг. Новые аккумуляторные батареи расширят линейку продукции компании. Использование унифицированных элементов и модулей собственной конструкции «ТЭЭМП» позволят создавать в одном корпусе комбинированные источники тока — аккумуляторная батарея (АБ) плюс суперконденсатор (СК).

Читайте также:  Как быстро зажечь костер в дождливую погоду?

Оригинальная компоновка была использована инженерами компании для создания аккумулятора с катодным материалом на основе литий-железо-фосфата (LiFePO4/LFP). Батареи показали рост удельных объёмных характеристик (Вт.ч/л) до 60% выше, чем у аналогов, представленных на российском рынке. Конструкция оптимизирует токовые и тепловые поля, что особенно важно для высоконагруженных аккумуляторных модулей электробусов, гибридных автобусов, различной тяжелой техники и рельсового транспорта, в том числе перспективных трамваев.

В рамках первого этапа разработки аккумуляторных батарей выбраны системы литий фосфат железа и системы из смеси оксидов, что позволило достигнуть параметров ячейки в 150 кВт/кг и не менее 200 Вт.ч/кг.

В рамках второго этапа планируется создание аккумуляторных батарей на базе системы литий-сера (LiS). По предварительной оценке, такие батареи позволят достигнуть уровня удельной энергии от 250 до 400 Вт.ч/кг в зависимости от циклического ресурса.

Ключевыми преимуществами инновационной разработки «ТЭЭМП» является высокая технологичность и унификация аккумуляторной батареи и суперконденсаторных модулей. Их комбинация открывает новые перспективы для создания Hi Efficiency and Extra long life Battery (HEELL Battery, высокоэффективных комбинированных источников тока) для электротранспорта и ESS (системы накопления/хранения энергии) для SmartGrid (активно-адаптивные сети электроснабжения).

  • Коммутация элементов в накопителе
  • © teemp.ru

Компания «ТЭЭМП» — российский разработчик систем для хранения и накопления энергии, а также химических источников тока, в том числе импульсных и энергетических суперконденсаторов.Компания «ТЭЭМП» образована в 2011 году на базе ведущих научных организаций. В компании работают высококвалифицированные специалисты, имеющие многолетний успешный опыт создания химических источников тока, в том числе импульсных и энергетических суперконденсаторов. С 2011 года компания является резидентом Фонда «Сколково».

В команде работают эксперты и ученые с годами академической практики и разработок в области внедрения накопителей энергии на базе суперконденсаторов на ведущих предприятиях РФ и стран СНГ. Более 35 работ и статей опубликовано в российских и международных научных изданиях.

Более 7 лет успешной работы собственной испытательной лаборатории и конструкторского бюро — R&D центр ТЭЭМП расположен на базе Национального исследовательского технологического университета МИСиС. В партнерстве с МИСиС и академиком Михаилом Васильевичем Астаховым ТЭЭМП ведет разработку новых электролитов, перспективных методов накопления энергии, проводит опытные испытания.

Собственные производственные мощности расположены в городе Химки (Московская область) и оснащены самым современным оборудованием, обеспечивающем строжайший контроль качества изделий на всем производственном цикле — сертификаты соответствия по ГОСТ РВ 0015-002-2012 и сертификаты менеджмента качества ISO 9001:2015.

200 тысяч суперконденсаторов в год — сегодняшняя мощность предприятий ТЭЭМП. 1 миллион ячеек в год — плановое увеличение объемов производства в 2020-21 гг.

Компания ТЭЭМП работает в партнерстве с основными научными и технологическими исследовательскими центрами: Национальный исследовательский технологический университет МИСиС; Московский государственный университет имени М.В.Ломоносова; Сколковский институт науки и технологий (Skoltech); Центральный аэрогидродинамический институт имени профессора Н. Е. Жуковского (ФГУП «ЦАГИ»); Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина (ФГУП «СибНИА им. С. А. Чаплыгина»).

Графеновый аккумулятор. Прорыв в создании устройств хранения энергии

В настоящее время потенциальных покупателей электромобилей зачастую пугает перспектива довольно небольшого пробега автомобиля от одной подзарядки и слишком долгий процесс заряда аккумуляторов. В самое ближайшее будущее все может очень сильно измениться и нас ждут весьма интересные девайсы способные заряжаться за несколько минут, а также графеновые электронные компоненты и другие наноматериалы.

Графеновые аккумуляторы окажут громадное влияние на все сферы повседневной жизни. Для примера, удельная емкость литий-ионного аккумулятора применяемого в настоящее время, составляет 200 Вт/ч на 1 кг веса. Графеновый аккумулятор такого же веса имеет удельную емкость 1000 Вт/ч. Очевидно, что графеновая аккумуляторная батарея установленная, например, в Tesla Model S способна увеличить пробег электромобиля с 334 км до 1013 км на одной подзарядке. Кроме всего прочего такие батареи можно зарядить менее чем за 10 минут. Конечно, чтобы достичь такой скорости заряда необходима мощная зарядная станция, но это уже не такая большая проблема.

Еще в декабре 2018 года индийская компания Log 9 Materials объявила, что работает над металлическими воздушно-воздушными батареями на основе графена, что в теории может даже привести к появлению электрических транспортных средств, работающих на воде. Металлические воздушные батареи используют металл в качестве анода, воздух (кислород) в качестве катода и воду в качестве электролита. В воздушном катоде батарей используется стержень графена. Поскольку кислород должен использоваться в качестве катода, катодный материал должен быть пористым, чтобы воздух мог проходить, свойство, в котором графен превосходит другие. Согласно Log 9 Materials, графен, используемый в электроде, способен увеличить эффективность батареи в пять раз при стоимости в одну треть.

Новые разработки графеновых аккумуляторов

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков. Они считают, что будущее за графеновыми аккумуляторами.

Сравнительно недавно Graphenano, компания из Испании, продемонстрировала прототип графен-полимерного аккумулятора обладающего уникальной способностью – требуемое время его заряда в 3 раза меньше, чем для обыденных литий-ионных аккумуляторов. Конечно же успехи этой компании подхлестнули громадный интерес различных производителей, которые стали тотчас предвкушать все выгоды применения таких аккумуляторов.

В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей. Графеновые батареи менее громоздкие, чем их литий-ионные аналоги: масса графенового аккумулятора вдвое меньше массы литий-ионного. И что не маловажно, такие батареи не могут взорваться.

В конце 2015 года Graphenano открыли завод площадью более 7000 квадратных метров по производству графен-полимерных аккумуляторов в испанском городе Екла, благодаря объединению усилий с группой химиков из Национального университета Кордовы и компанией Grabat Energy. Было создано специальное оборудование для обеспечения 20 сборочных линий на 80 миллионов ячеек. Эти аккумуляторы не будут производить газ и не будут пожароопасными, заявляют в Graphenano, даже короткое замыкание им не будет страшно. Полимер был сертифицирован при сотрудничестве с институтами Декра (Испания) и TUV (Германия).

Графен представляет собой слой атомов углерода толщиной в один атом, расположенный в гексагональной решетке (в виде шестиугольников). Это строительный блок углерода, но графен сам по себе является замечательным веществом, обладающим множеством удивительных свойств, которые постоянно дают ему название «чудо-материал».

Как улучшить характеристики существующих аккумуляторов

В области аккумуляторов обычные материалы для аккумуляторных электродов (и перспективные) значительно улучшаются при добавлении графена. Графеновая батарея может быть легкой, долговечной и подходящей для накопления энергии большой емкости, а также для сокращения времени зарядки. Это продлит срок службы батареи, что связано с количеством углерода, который нанесен на материал или добавлен к электродам для достижения проводимости, а графен добавляет проводимости, не требуя количества углерода, которое используется в обычных батареях.

Графен может улучшить такие свойства батареи, как плотность энергии и форму, различными способами. Так литий-ионные аккумуляторы (и другие типы аккумуляторных батарей) могут быть улучшены путем введения графена в анод аккумулятора и использования проводимости материала и характеристик большой площади поверхности для достижения морфологической оптимизации и производительности.

Также было обнаружено, что создание гибридных материалов также может быть полезным для улучшения качества батареи. Например, гибрид катализа оксида ванадия (VO2) и графена может быть использован на литий-ионных катодах и обеспечивает быструю зарядку и разрядку, а также большую стойкость цикла зарядки. В этом случае VO2 обладает высокой энергоемкостью, но плохой электрической проводимостью, что можно решить, используя графен в качестве своего рода структурной «основы», на которой можно присоединить VO2- создавая гибридный материал, который обладает как повышенной емкостью, так и превосходной проводимостью.

Исследователи ищут новые типы активного электродного материала, чтобы вывести батареи на новый уровень высокой производительности и долговечности и сделать их более подходящими для больших устройств. Наноструктурированные материалы ионно-литиевых батарей могут обеспечить хорошее решение. По последним данным исследователи из Венского университета и международные ученые разработали новый наноструктурированный анодный материал для ионно-литиевых батарей, который увеличивает емкость и срок службы батарей.

2D/3D нанокомпозит на основе смешанного оксида металла и графена, разработанный двумя учеными и их командами, как утверждается, серьезно улучшает электрохимические характеристики литий-ионных аккумуляторов. Основанный на смешанном мезопористом оксиде металла в сочетании с графеном, этот материал может обеспечить новый подход к более эффективному использованию батарей в больших устройствах, таких как электрические или гибридные транспортные средства. Новый электродный материал обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер. Для сравнения, современные литий-ионные аккумуляторы теряют свою эффективность после примерно 1000 циклов зарядки.

Читайте также:  Грили Камадо: особенности, секреты и советы по выбору

Финансовые проблемы реализации научных достижений

Проблема создания новых аккумуляторных батарей еще и в том, что сейчас исследованиями в области элементов питания занимается слишком много компаний. Проектов просто огромное количество — от «пенных» и жидких батарей до аккумуляторов с экзотическими соединениями в составе электролита. И явного лидера среди всех этих компаний нет. Особого энтузиазма такая ситуация не вызывает и среди инвесторов, которые не слишком охотно выделяют деньги на новые проекты.

А денег требуется много. «Для того, чтобы создать небольшую промышленную линию по производству аккумуляторов, создаваемых по новым технологиям, требуется около $500 млн. И даже, если бы перспективный аккумулятор был создан, перевести научную работу в сферу коммерции не так просто. Разработчики мобильных устройств или производители электромобилей будут тестировать новые батареи годами, прежде, чем принять решение. Инвестиции за это время не окупятся, а компания-разработчик будет убыточной. Ученые утверждают, что наладить промышленную линию стоимостью в $500 млн. сложно, особенно, если бюджет на год составляет $5 млн.

И даже в том случае, когда новая технология попадет на рынок, производителю аккумуляторов нового типа придется пережить нелегкий период адаптации и поиска покупателей. Но пока что до этого этапа никто не доходил. Так, компании Leyden Energy и A123 Systems, разработавшие новые, вполне перспективные технологии, так и не вышли на рынок. Им просто не хватило для этого денег. Еще два перспективных «энергетических» стартапа, Seeo и Sakti3, были куплены другими компаниями. Причем суммы этих двух сделок были гораздо ниже того, на что рассчитывали первые инвесторы компаний.

Крупнейшие производители электроники, Samsung, LG и Panasonic, заинтересованы больше в совершенствовании текущих своих продуктов и увеличении числа их функций, чем в получении батарей нового типа. Поэтому пока что продолжается процесс оптимизации Li-Ion батарей, созданных еще в 70-х годах прошлого века. Остается надеяться, что у графеновых аккумуляторов все же получится разорвать порочный круг.

Что дальше?

Сегодня на исследования графена выделено несколько миллиардов долларов, и по прогнозам ученых, этот материал сможет заменить собою кремний в полупроводниковой промышленности. Графен несомненно перевернет мир технологий, в том числе и созданием новых аккумуляторных батарей в ближайшие годы, не в последнюю очередь еще и потому, что он недорог в производстве, и очень распространен в природе. Каждая из стран имеет его в изобилии.

Аккумуляторы на основе графена быстро становятся сопоставимыми по эффективности с традиционными твердотельными аккумуляторами. Они все время продвигаются, и скоро они превзойдут своих твердотельных предшественников. Дополнительные преимущества, связанные с присутствием графена в электродах, могут быть полезны, даже если эффективность не так высока. Для батарей, которые обладают аналогичной эффективностью, графеновые батареи являются идеальным выбором, они начали набирать обороты на коммерческом рынке. Ожидается, что мировой рынок графеновых аккумуляторов к 2022 году достигнет 115 миллионов долларов, увеличившись в среднем на 38,4% в течение прогнозируемого периода с рынком с доходом около 38% ».

Удивительные свойства графена

Графен является самым тонким материалом, известным человеку, толщиной в один атом, а также невероятно прочным – примерно в 200 раз прочнее стали. Кроме того, графен является отличным проводником тепла и электричества и обладает интересными способностями поглощения света. В целом графен характеризуется как материал с наивысшей подвижностью электронов среди всех известных материалов. Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами – таким образом графеновый проводник способен проводить электричество практически без потерь.

Графен – легкий, он весит всего 0,77 миллиграмма на квадратный метр. Поскольку это один 2D-лист, он имеет самую высокую площадь поверхности из всех материалов.

Листы графена являются гибкими, и фактически графен является наиболее растяжимым кристаллом – вы можете растянуть его до 20% от его первоначального размера, не разбивая его. Наконец, идеальный графен также очень непроницаем, и даже атомы гелия не могут пройти через него.

Он также считается экологически чистым и устойчивым, с неограниченными возможностями для многочисленных применений. Это действительно материал, который может изменить мир с неограниченным потенциалом для интеграции практически в любую отрасль.

Когда листы графена предоставлены сами себе, они будут складываться и образовывать графит, который является наиболее стабильной трехмерной формой углерода при нормальных условиях.

IBM создала емкий, безопасный и дешевый аккумулятор со сверхбыстрой зарядкой

Аккумуляторы без тяжелых металлов

Специалисты IBM Research разработали аккумулятор из новых материалов, который по ряду характеристик значительно превосходит широко распространенные сегодня литий-ионные батареи. Об этом говорится в сообщении, размещенном в блоге исследовательского подразделения компании (IBM Research) на ее официальном сайте.

В сегодняшних аккумуляторах, которые используются в ряде устройств: от фитнес-браслетов и смартфонов до электромобилей, часто применяются тяжелые металлы, в частности кобальт и никель. Например, в литий-ионных аккумуляторах катод (отрицательный электрод) может выполняться из кобальтата лития или никелата лития. Сами по себе эти металлы могут представлять угрозу как здоровью человека, так и окружающей среде. Кроме того, их запасы ограничены, а при добыче кобальта, по данным Financial Times, используются детский труд.

Новая технология IBM предполагает создание аккумулятора на базе трех новых материалов, среди которых тяжелых металлов нет. Химический состав материалов, из которых выполнены анод, катод и жидкий электролит, исследователи не раскрывают, однако уверяют, что необходимые материалы могут быть получены из обыкновенной морской воды и то, что они значительно дешевле используемых в современных литий-ионных батареях.

Преимущества новой технологии

По словам специалистов IBM Research их разработка превосходит литий-ионную технологию по многим важным параметров. Так, если верить ученым, их аккумулятор сможет заряжаться до уровня 80% за пять минут, при этом вероятность воспламенения такого устройства значительно ниже по сравнению с литий-ионными аналогами. У последних меньшая температура возгорания.

Энергетическая плотность новинки сопоставима с передовыми образцами литий-ионных аккумуляторов (более 800 Вт*ч/л), а ее энергоэффективность превышает 90%.

Кроме того, исследователи утверждают, что проведенные ими тесты показали возможность применения этой технологии при изготовлении аккумуляторов с весьма продолжительным сроком службы, однако не приводят каких-либо конкретных данных на этот счет.

Сферы применения аккумуляторов IBM

Исследователи полагают, что продукция на основе разработанной ими технологии может найти применение в энергетике, автомобиле- и авиастроении.

Несмотря на то, что исследования находятся на ранней стадии, IBM Research заключила контракты на совместную разработку нового поколения аккумуляторов и инфраструктуры для их совершенствования и производства с Mercedes-Benz Research, Central Glass (производитель электролитов) и Sidus (производитель аккумуляторных батарей).

Не без помощи искусственного интеллекта

IBM Research также сообщает, что в своей работе команда использует технологию искусственного интеллекта (ИИ), называемую семантическим обогащением. Она применяется для дальнейшего улучшения характеристик батареи путем выявления наиболее подходящих и безопасных материалов.

Альтернативные разработки

Существуют и другие технологии, способные заменить собой литиевые аккумуляторы и положить конец их далеко не самым экологичным и этичным производству и утилизации.

В декабре 2018 г. CNews писал о том, что ученые Иллинойского университета в Чикаго разработали новую технологию производства аккумуляторных батарей для мобильных устройств, в основе которой лежит принцип использования неупорядоченных частиц оксида магния и непосредственно магниевого анода.

Еще одна группа американских ученых, на этот раз из Калифорнийского технологического университета, создала аккумулятор на основе фторидов – химических соединений фтора с другими элементами таблицы Менделеева. Подобные АКБ в теории характеризуются способностью держать заряд до восьми раз дольше в сравнении с литий-ионными и литий-полимерными. Опять же, они намного безопаснее оных ввиду неподверженности влиянию повышенной температуры окружающей среды или нагреву во время подзарядки.

В ноябре 2018 г. стало известно, что в Китае стартовало производство аккумуляторов с твердым электролитом, которые в обозримом будущем могут стать частью мобильной техники и транспортных средств. Предполагалось, что они придут на смену литий-ионным батареям за счет большей компактности и безопасности.

Добавить комментарий